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Crossover Behavior for a Noninteracting 
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Near the noninteracting localization phase transition, we investigate the cross- 
over between orthogonal and unitary universality classes as a weak magnetic 
field is applied. We first derive a field-theoretic description of the noninteracting 
disordered electronic system in the presence of a weak magnetic field. This 
description contains both symmetries corresponding to the system with and 
without a magnetic field. We obtain a unified generating functional, from which 
a variety of relevant physical quantities can be calculated. The theory is then 
renormalized. The renormalization group flow equations contain information on 
the fixed points of the theory and on the crossover between the two universality 
classes. Within an e ( = d - 2 )  expansion the crossover exponent is obtained and 
previous phenomenological results from the literature are recovered. We also 
discuss the shift in the location of the mobility edge caused by the weak field. 
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1. I N T R O D U C T I O N  

As the s t r eng th  of the d i so rde r  is increased,  it is well k n o w n  tha t  a disor-  

dered  n o n i n t e r a c t i n g  e lec t ronic  sys tem underg ies  a loca l i za t ion  t r a n s i t i o n  if 
the  spa t ia l  d i m e n s i o n  is grea ter  t h a n  two (see ref. 1 for a review). As a func-  

t ion  of d isorder ,  or  energy,  there  is a m o b i l i t y  edge sepa ra t ing  meta l l ic  
b e h a v i o r  f rom i n s u l a t i n g  behav ior .  As this mob i l i t y  edge is a p p r o a c h e d  
f rom the meta l l ic  side, the c o n d u c t i v i t y  or  diffusion coefficient van i shes  
c o n t i n u o u s l y  a n d  if it is a p p r o a c h e d  f rom the  i n s u l a t i n g  side, the local iza-  
t ion  l eng th  diverges.  ~t) 
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Wegner has mapped this phase transition problem onto an effective 
field theory which takes the form of a matrix nonlinear a-model. (2) There 
are different universality classes, depending on the internal symmetries of 
the field theory. The theory can be formulated such that a system with time 
reversal symmetry (TRS) has a noncompact (pseudo) orthogonal sym- 
metry and a system without TRS has a noncompact unitary symmetry. 
These two symmetries define the orthogonal and unitary universality 
classes, respectively. 

In this paper we study the crossover behavior of a system near the 
mobility edge as a weak uniform magnetic field (breaking TRS) is applied. 
This field changes the universality class from orthogonal to unitary. The 
general problem of crossover for the localization problem has been dis- 
cussed elsewhere. (3'4) The main contribution of this paper is to show how 
the original crossover ideas can be applied to the magnetic field problem 
even though the applied vector potential (which is the fundamental field) 
is position dependent. Earlier work on this problem was done by 
Opperman and Belitz ~6~ and Biafore et aI. ~7) Opperman and Belitz (6) used 
an N-orbital model with a time-reversal breaking perturbation to compute 
a crossover exponent ~b and to lowest order in an ~ ( = d - 2 )  expansion he 
obtained ~b = 2/e. Biafore et al. ~7) used a Wilson-Polyakov renormalization 
group to obtain the same result. The main idea used in this paper is to 
apply field-theoretic renormalization group (RG) methods (see, e.g., ref. 8) 
directly on the "free energy" which depends only on the magnetic field and 
not on the vector potential. In this way the renormalization of a 
propagator that is not diagonal in momentum space is avoided. 

Within a low-order e-expansion ( 5 = d - 2 )  we recover the 
phenomenological result of Khmel'nitskii and Larkin (9) for the crossover 
exponent near the orthogonal fixed point. In light of a recent four-loop 
calculation by Wegner (1~ for an easier crossover problem, it is unclear 
whether or not the crossover exponent of Khmel'nitskii and Larkin is 
exact. However, Biafore et aL have given a gauge invariance argument that 
suggests that the exact crossover exponent is trivially related to the correla- 
tion length exponent v by ~ = 2v. In this paper we also discuss the shift in 
the location of the mobility edge caused by a weak magnetic field. 

This paper is organized as follows. In Section 2 we set up the basic 
field theory such that it contains both the pseudo-orthogonal and pseudo- 
unitary symmetries. In Section 3 we "derive" the matrix nonlinear a-model 
for the crossover problem. In Section 4 we compute the "free energy," or 
generating functional, using a loop expansion and dimensional regulariza- 
tion. In Section 5, the free energy is renormalized and the critical and cross- 
over behaviors are discussed. In Section 6 we conclude with a discussion. 
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2. T H E  FIELD T H E O R Y  

We start with the generating functional (see, e.g., ref. 1 1) 

Fn[J] - - i n  Z~[J] (2.1) 

where n ( ~ 0 )  is the number of replicas, the bar denotes an average over 
the random potential of the system, and 

Z.EJ] - f D~ exp{ - A.E~b, J ]  } (2.2) 

A. [~, J ]  = 
p ' ,  p ,  a ' ,  a 

i( Sp + p, )i/2 ( Oa,p, t ~( E _  icoSp _ i21) (~ a,a(~ p,p __ j ; ,  p~a'a I~) ap ) 

(2.3) 

with a = 1 ..... n; p = 1, 2. Here 

a ' a  
J;,p(x, y ) -  (xl "~'~ 

are source fields, Sp = i ( -  1)P, E is real, and co > 0. If the Hamiltonian 
is symmetric, the field ~b(x) = ( x  I ~b ) can be either real or complex. If H is 
Hermitian but not symmetric, ~b(x) must be complex. The parameter ~ is 
1/2 for real fields and 1 for complex fields. For complex fields, D~b denotes 
D(Re ~b) D(Im ~b). Using appropriate source fields, all quantities of physical 
interest can be generated. For this work, however, we can simply set J =  0. 

At zero temperature, the impurities of the system that cause the 
localization can be modeled by a random potential V(x). The distribution 
of the random potential is usually assumed Gaussian, i.e., 

P [ V ] = e 2 ~ - ~ 7 ( 1 / ~ d ~ x ,  V 2 ~ , ~  (2.4) 
expl_-(  /ZT) J a x v tX)l 

where 7 measures the strength of the random potential of disorder. With a 
magnetic field B = V x  A(x) the Hamiltonian of the system in the coor- 
dinate representation is 

H = - ~ m  V + h c A ( X )  +V(x )  (2.5) 

This Hamiltonian is not symmetric. The average over the random potential 
yields 

Zn[J ]  = f D~ exp { -  f dax ~'[S(I?t-E+icnS)JcJ+2fdax [~*S~] 2} 

(2.6) 
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and 

~= 
r 
~b22 

(2.7) 

The ? sign denotes a Hermitian conjugate and the matrix S has zeros off 
diagonal and is equal to Sp on the diagonal. 

To determine the symmetry of the problem, we examine the action at 
co=0 because eventually we are interested in the long-time or zero- 
frequency limit. Under a linear transformation T (~b ~ T~b), we have, 

T* S( tTI- E) T = S( k I -  E) (2.8) 

Notice that the matrix S ( / ~ - E )  is Hermitian, and has n positive and n 
negative eigenvalues for each eigenvalue of the Hamittonian /~.(2) This 
defines the pseudo-unitarity matrix T. It follows that the theory is invariant 
under the pseudo-unitary U(n, n) transformation of the field~b, cor  
breaks the U(n, n) symmetry into a lower symmetry, a direct product of 
two unitary groups U(n)| U(n). This can be seen by rotating ~bl and ~b2 
separately. When the magnetic field is switched off, the Hamiltonian /), 
hence S ( H - E ) ,  is symmetric. Then the imaginary parts of the complex 
field ~b play exactly the same roles as the real parts do. Thus the field ~b 
becomes a 1 x 4n real matrix, and the Hermitian conjugate operation is 
reduced to a transpose operation, denoted by superscript T. Also, the 
invariance of the action functional under the transformation requires 

U s( f i -  E) Y = S( I:I-  E) (2.9) 

This defines the pseudo-orthogonal symmetry, O(2n, 2n), of the transfor- 
mation. 

To obtain a bigger symmetry which simultaneously contains both 
symmetries, let us decompose the Hamiltonian into two parts, 

~r=/4R + ~q~ (2.20) 

where, for any real function f(x) ,  /1Rf(x) is a real function a n d / ~ f ( x )  is 
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a pure imaginary function. Using a matrix representation of complex 
number, we can write the Hamiltonian as 

j = (  J R  i~. '"/= j ,~ | Z.o _ j , |  ,c2 (2.11) 
- \ - i J ,  H,d 

Here, the ri's are Pauli matrices. Choosing the Coulomb gauge, we have 

/QR = --  h 2  v 2  e2 
2m + ~ A2(x) (2.12a) 

he  
J i  = - i ~ m  A(x).  V (2.12b) 

Expressing ~b,p in terms of its real part and imaginary parts, 

r = Oap + iCap (2.133 

we obtain 

A[g ' ]  = f ddx g 'X[s (J -  E + iogS)] g- ' -~f  dJx (g'VS7-')2 (2.14) 

where 7* is a 1 x 4n matrix, i.e., 

/ Oap\ 
g ' , ,=  it/, ) (2.15) 

The symmetry remains the same, as it should. In fact, it is a subgroup 
of U(2n, 2n; R), which is isomorphic to U(n, n; C), the usual pseudo- 
unitary group U(n, n). Here, R, C, and later Q denote real, complex, and 
quaternion matrix elements, respectively. 

Defining a set of quaternion matrices 

G0 = TO, ffl = r l '  if2 = i%, a3 = ~3 (2.16) 

we rewrite 

J = J R  | Oo + i J r  | 02 (2.17) 

Extending the range of SH into 2n x 2n matrices with quaternion elements, 
we find that it satisfies Eq. (2.9) and is symmetric. The invariant transfor- 
mation T has O(n, n, Q) Symmetry and satisfies TTST= S. This symmetry 
obviously contains orthogonal and unitary symmetries. In this representa- 
tion, the field g" is a l x 2n matrix with each components being a 1 x 2 
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matrix. Finally, we note that in general the transformation is a function of 
position, i.e., T-- T(x) s O(n, n; Q). 

For a variety of reasons, the localization phase transition problem 
must be formulated in terms of composite variables which are products of 
the ~b fields. Physically these variables represent the fluctuations that lead 
to diffusive propagators, which in turn become critical at the localization 
transition. We first introduce (2n) 2 2 x 2 matrices (quaternions), 

aa'. a' = p' Qpp,, a, 1,...,n; p, = 1 , 2  (2.18) 

Using the identity 

exp 1 1/20)} f DQ {- ~f d"x (tr[Q 2 ] -2i,1/2~ TS'/2QS 

_-expI_ J . i9. 
and performing the ~P integral, we find 

Z , [ 0 ]  =;DQ e aEQ1 (2.20) 

with 

A[Q]=�89 I d"xtr[QZ]-Tr[ln(I2I-E-coS-71/2Q) ] (2.21) 

This is the exact field theory in terms of the matrix Q. Similar 
forms of the action in different representations can be found in the 
literature. (7' 12,13) 

3. THE N O N L I N E A R  a - M O D E L  IN THE PRESENCE OF A 
W E A K  M A G N E T I C  FIELD 

The simplest way (141 to derive the nonlinear a-model describing the 
localization transition is to expand around the saddle-point solution of the 
field theory defined by Eq. (2.21). The fluctuations about this solution lead 
to the a-model. The saddle points are determined by the equation 

6A[Q][ = 0  (3.1) 
6Q ~=0, 
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For zero magnetic field and weak disorder, we find 

(Qs)pp,=i(_l)p m7 '/2 ( mE)(U-2)/2 
2h2F(d/2 ) \2rEh2 } aOapp, (3.2) 

The magnetic field will in general shift the position of the saddle points. 
This is a trivial magnetic field dependence. If the magnetic field is weak, the 
shift is analytic and is proportional to the square of the field strength, 
because the saddle points do not depend on the direction of the magnetic 
field�9 For weak fields we assume that Eq. (3.2) is still valid�9 

Under the transformation T of the field gt, the matrix Q obeys the 
following transformation: 

Q --* S - 1 / 2 ( T T )  -1  S1/2QS1/2T-1S-1/2 (3.3) 

Requiring Q to be invariant under this transformation, we choose Q in a 
manifold of the saddle point in the matrix field space, i.e., Q has the form 

This implies that 

Q = S1/2ZOs z 18-1/2 (3.4) 

Q2 _ rnZ7 ( mE ~ (d- 2)/2 
4h4F2(d/2) \ 2 - ~ J  

QT= Q 
(3.5) 

Equation (2.21) includes all possible fluctuations. To describe the criti- 
cal behavior, however, only the long-wavelength fluctuations are needed. If 
we expand Eq. (2.21) around the saddle point and if we neglect constant 
terms and retain terms to order (6Q) 2 (Q = Q, + 6Q) then we obtain 

A [6Q] = �89 f dax day t r[f(x - y )  6Q(y) fiQ(x) 

where 

- 7G(x, y) 6Q(y) G(y, x) 6Q(x)] - (7o f dax tr(SQ) (3.6) 

a S = m  
fO 

y l /2  ' G(x, y )=  (xl (I2I-E-yl /2Qs)-I  lY) (3.7) 

In the presence of a uniform magnetic field B = BL the Green function 
(3.7) can be written in the quaternion representation as 

G(x, y)  = C(Ix - Yl) e ~ ( x ' ' ~  ~2 (3.8) 
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where t~( lx-Yl)  is analytic in B, and 

eB e 
~(x, y ) =  - 2 h e  ~ ' ( x x y ) =  - h c c A ' ( y - x )  (3.9) 

Furthermore, it is easy to prove that for a function f(x) ,  

e2~(x,y)r = e Uy x) 'V-]f(x) (3.10) 

where 
2e 

V+ =-- 0"0 (~) Vx • if2 (~) ~C A(x ) (3.11) 

We assume that the fluctuation 6Q(x) is slowly varying on the scale of the 
mean free path and that the magnetic field is weak. Then, we can 
approximate G ( l x - y [ )  by the Green function without the magnetic field. 
For the same reason, the right-hand side of Eq. (3.10) can be formally 
expanded in terms of the operator ( y -  x)" V_,  i.e., 

C 2~(x' y) r = aQ(x) + (y - x)" V_ 6Q(x) 

+ � 8 9  V _ a Q ( x ) +  ... (3.12) 

For q~ = 0 (zero magnetic field) we simply have a formal Taylor expansion 
of 3Q(y) about x. Using that ~ ( [ x - y [ )  is diagonal in the p index, we can 
factor out the G's in Eq. (3.6) and obtain 

A[aQ]= f ddx {a ~ ~, {(6Q(~ +aQ~Z))pp; [-Dppg 2 
, ' p ,p '  

• (6Q (~ - 6Q(Z))plp + (6Q(') + iaQ(3))ppl 

ia) 2 + cpp,](aQ ~1)- iaQ{3))p;p } - a3  t r [SQ(x)]  1 [ - D pp,(V + X 

(3.13) 

where a - ( 2 e / h c ) A ( x ) .  Here 6Q(O, i =  0, 1, 2, 3, is the ith component of 
5Q, i.e., 6Q = Z~=o 6Q(i)| a~ and to leading order in the disorder 7, 

Cpp ,  ,~  Opp, 

E h  6 2F2(d/2)(2rch3~ a-2 
Dpp, ~ (1 - 6 pp, ) m-U~2 d \--m-EJ 

(3.14) 

From Eqs. (3.13) and (3.14), it follows that the fluctuations for p =  p' 
will be suppressed by the nonvanishing value of Cpp,. The fluctuations of 
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p :A p' are critical. In other words, the fluctuations about the mean field 
theory are longitudinally massive and transversely massless. We assume 
that the massive fluctuations can be ignored. We also require that the 
original symmetry be preserved. Hence, we replace the longitudinal fluctua- 
tions by using the condition on the Q field, Eq. (3.5). Using that Q, is 
uniform in space, we finally obtain the nonlinear sigma model in the 
presence of a magnetic field, (13) 

A[Q] = ~ f ddx tr{(Q(~ Q(2))(_V2)(Q(O) Q(2)) 

+ (Q{'}+iQ(3))[-(V+ia)2](Q(l)-iQ{31)-hSQ} (3.15) 

with 

Q 2  --1 

QT=Q (3.16) 

where 

h = moo ( mE "~ (d 2)/2 

t 2h2r(d/2) \2rch2J 

the "temperature" or the disorder coupling constant is t = 2dm?/Eh a, and 
we have scaled the matrix fields by a factor of 

my '/2 ( mE ,~ (d- 2)/2 

2h2 F( d/2 ) \ 2r~h2 ] 

so that the fields are dimensionless. It is easy to show that t is inversely 
proportional to the Boltzmann diffusivity and that t is dimensionless at 
d = 2 .  

4. T H E  FREE E N E R G Y  OR G E N E R A T I N G  F U N C T I O N A L  

The presence of a magnetic field complicates the renormalization 
group solution of the nonlinear a-model. The usual momentum-shell 
or field-theoretic schemes do not work directly because the propagator 
involving the magnetic field is not diagonal in momentum space. (~5) We 
note, however, that the theory does not prefer any direction. This implies 
that the generating functional defined in Eq. (2.1) depends only on the 
strength of the magnetic field. This fact suggests that one should calculate 
and renormalize the generating functional. 
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Our aim is to study the crossover and in particular to study the 
stability of the pseudo-orthogonal fixed point subject to a small magnetic 
field. In this section we use perturbative methods to derive a generating 
functional density containing information on both symmetries. We intro- 
duce a renormalization procedure whereby it is possible to obtain both 
pseudo-orthogonal and pseudo-unitary fixed points. The crossover 
behavior is then simply obtained. We expand the effective action func- 
tional, Eq. (3.15), in terms of the massless transverse components of the 
fluctuation fields Q to establish a loop expansion for the generating func- 
tional density. We will also generalize the dimensional regularization to the 
case where a magnetic field is applied. As usual, the constraints given by 
Eq. (3.16) are satisfied by parametizing the matrix Q by 

Q = ( - i ( 1  + qqT)t/2 

q 

q in a quaternion representation is 
3 

qT 

i(1 + qTq)l/2) (4.1) 

q = ~ q(i)| ai (4.2) 
i=0 

where q(i~, i = 0, 1, 2, 3, is an n x n real matrix. Further, we define 

O--= q(~ + iq(2), ~ = q(l) + iq(3) (4.3) 

For the one-loop calculation, we only need to expand Eq. (3.15) up to 
O(q4). Using Eq. (4.3), it is straightforward to obtain, 

where 

A = C + A o + A ~  (4.4) 

4nh V c -  (4.5) 
t 

is a constant, with V the volume of the system. In Eq. (4.4), 

A o -  t d~lx tr[O(-V2+h)O* + O ( - V 2 - 2 i a . V + a 2 + h ) O  *] (4.6) 

is the "free part" of the action functional and A~ is the interaction part. 
To implement the renormalization procedure, we calculate the 

generating functional density per unit volume per replicated system defined 
as [cf. Eq. (2.1)] 

f - 4 n V -  4 ~  In DODO*D~Dt~*e Ao A,--C (4.7) 
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It is not difficult to show that 

- l n ( f  DODOtDtpVtpte-A~ ct)+g(h,O)] (4.8) 

where c~ - eB/hc and 

g(h, ~)=-fdax (x  I l n ( - V 2 - 2 i a . V + a 2  + h ) I x )  (4.9) 

Thus, we have the following loop expansion for the generating functional 
density: 

h n 1 
f= t+-~[g (h , e )+g(h ,O)]+~-~<Al )+  ... (4.10) 

where ( - )  denotes an average with weight exp(-Ao). 
For the calculation of (A t )  we need correlation functions of the fields. 

Using that A [cf. Eq. (4.6)] is a Gaussian statistical weight, we have 

t 
( O*(x) Olin(y)) = ~ (~ilC~jmfO(X, y) (4.1 la) 

t 

(0" (x )  4-',m(Y) ) = ~ (~il(~jmfc~( X, Y) (4.1 lb) 

(O~(x) o,m(y)) = (O,Ax) ~4',.(y)) = (oij(x)  Ot, .(y)) 

= (O8(X) ~ttm(y) > = 0  (4.11C) 

where 

f~,(x,y)= (xl ( - V 2 - 2 i a ' V + a 2 - + - h )  l ly) (4.12) 

Further, because the statistical weight is Gaussian, we need only these 
two-point correlation functions. Therefore, the averaging process becomes 
summation over all possible products of pair "contractions," each of which 
is replaced by functions f~, fo and their derivatives. As for cases where 
partial derivatives appear, it is obvious that we should distribute each 
derivative in all possible legitimate ways. In particular, at the one-loop 
order we have at most two positions for each derivative. In this way, and 
by summing over all indices, we obtain 

n2Vhtfof~ 
(A , )  4 (4.13) 

Here, f~ = f~(x, x), fo = fo(x, x). 
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To calculate f~ in d dimension, we generalize dimensional regulariza- 
tion to the case where the magnetic field is applied. For d>~ 2 we use 

s t4 41 
V = ' a X l ,  (~X2 ..... 

= ~(--x2, Xl, 0 ..... 0) (4.15) 

Applying the path integral technique, ~ it is easily found that 

where 

Note that 

1 c3J(h, or 
f~ = fo + (4n),~/~ ~ (4.16a) 

jc o (4n)d/2 F (4.16b) 

d(h, ~) - dx  sinh2ax e 

g(h, c~)-g(h, O)= - V  f ?  ( f~ -  fo) dh 

(4.17) 

(4.18a) 

Using that J vanishes as h tends to infinity, we find 

VJ(h, ~) 
g(h, ~) =g(h, O) + (4n)d/~ (4.18b) 

By direct calculation, we obtain 

g(h, 0) 
2Vhd/2 (L~_ 3 

d(4n)d/~ 2 F (4.18c) 

Here we have dropped a term that vanishes in dimensional regularization. 
Therefore, up to the one-loop order, we obtain the generating 

functional density which contains both pseudo-orthogonal and pseudo- 
unitary symmetries, and from which we should be able to obtain the fixed 
points for both symmetries as well as crossover between them. Scaling the 
generating functional density by a factor (4~) -d/z, we have 

f = ~ + ---~ F + -~ J ( h, :Q -t 16 F 

nha/ZT ~ { 2 -  d'~ ~?J(h, ~) 
+ --i-6-- 1 ~ )  ~ +  O(T 2) (4.19) 
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where the disorder is scaled by (4~z) d/2, i.e., T =  t(4~)-d/2. In terms of the 
generalized ( function, 

nh d/2 /2 - d\ 

8h h~d- 2~/2 F C ~, d -  2 (4.20b) 

with 

f d 1/40~ d/2 2 d,  4cr + (a finite) 

1 for ff-L--~ ~ ~ ~ vo 

= 0 is the usual pseudo-orthogonal case. For ~ ~ ov the magnetic field 
dominates, in which case the field Q(I~+ iQ ~3~ and its Hermitian conjuga- 
tion in Eq. (3.15) are suppressed. However, Q(O)+ Q(2)is a complex field. 
Hence, this is the case of pseudo-unitary symmetry. Therefore, we obtain 
the generating functional densities for both the orthogonal and the unitary 
cases directly from Eq. (4.19). The two limiting cases are results obtained 
by, for example, ref. 17, up to the one-loop order, 

h nh d/2 

h nh d/2 

+ 1----~+ F - + O(T 2) (4.21a) 

+ O(T 2) (4.21b) 

The factor of two difference in the second terms of the two cases is due to 
the fact that in the unitary case the number of replicated fields is half of 
that in the orthogonal case. 

5. R E N O R M A L I Z A T I O N  A N D  T H E  C R O S S O V E R  B E H A V I O R  

The renormalizability of the nonlinear a-model in the presence of 
position-independent perturbing terms or fields has been proven by 
Br6zin et al. ~18~ The proof does not directly apply to the case where the field 
depends on position. We assume here that because the magnetic field is a 
physical field, it introduces at most one more renormalization constant into 
the theory. To one-loop order, we show that the magnetic field actually 
introduces no additional renormalization constants into the theory and 
that the magnetic field has its naive scaling dimension. 
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We perform the renormalization of the generating functional using a 
generalized minimal subtraction (GMS) scheme. (8) The generating func- 
tional (4.19) is in general divergent (as e -- d -  2 ~ 0) at every order in the 
disorder except for the first term. We denote the unrenormalized or bare 
quantities by (fB, Ts, he, eB). The renormalized generating functional and 
other parameters are related to the unrenormalized ones by the following 
relations: 

f(~, T, h, ~)= f~(rB, hB, ~ )  (5.1) 

T= ZrlI~TB (5.1a) 

h = Z~- 1/~h B (5. lb) 

= Zs I#c~B (5.1c) 

and the powers of/~ in Eqs. (5.1) are chosen such that T, h, and ~ are 
dimensionless. Zr ,  Zh, are Z~ are renormalization constants. 

After the renormalization procedure, all divergences (as e--*0) are 
absorbed into the renormalization constants. Expanding the renormaliza- 
tion constants in powers of T, we have 

Z--Sh = 1 + e 1 T-I- e2 T 2 + O ( T  3 ) (5.2) 
Z r  

Zh = 1 + bT + O(T 2) (5.3) 

Z~ = 1 + cT + o ( r  2) (5.4) 

where the expansion coefficients are in general functions of h and e, and to 
be determined by the MS scheme. The generating functional density f is 
not expected to be divergent as e--* 0. This immediately yields, for small h, 

c=O (5.5) 

n I C(h/~,e+2!] e l = -  1 (5.6) 
2 

nb[ c(h/~,8)][ ~ ] 
e 2 = - -  1 1+ ( y + l n h )  

e 2 

s  1 - c  ,~ ( 1 + ~ )  (5.7) 

Using that the generating functional is invariant under the renor- 
malization transformation, we can formally derive the renormalization 
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group flow equations. With e t the RG length scale factor, the flow equa- 
tions in the parameter space spanned by T, h/T-(2, and e are 

dT 
- -  = - e T [ 1  - ( b  - e~)  T ]  + O(T 3) (5 .8 )  
dl 

d~ 
- -  = 2~  + O ( T  2) (5 .9 )  
dl 

dfa 
--~ = s + 7~) (5.10) 

where the anomalous dimension of s 

�9 ~ e l ~ _ 2 (  (~e I c3e1~] 

+ T2{g(  2e2-bel OOJ 0["2J 

ae 2 8e, F ( ae, 3e,\ ~ 8el]) + = +a k2 e l+O~+~s (5.11) 

has to be finite as well in the limit ~ ~ 0. Thus we find 

1 1 - C ( O T / c ~ ,  ~) 
b-2el_C(OT/~,e)+C(f2To~,e+2)/2+O(1 ) (5.12) 

Therefore, by taking the limit n-+ 0, the RG flow equations are obtained: 

T 1 - C(~T/~, e) ] 
~f= -sT 1 2~ 1-c(erTs +~ (5.13) 

- -  = 2 ~  + O ( T  2) ( 5 . 1 4 )  
dl 

df2 
- -  = (2 + e ) f2  ( 5 . 1 5 )  
dl 

Equation (5.15) is exact in the n --+ 0 limit. 
Because the theory is symmetric in e, i.e., in the sign of the magnetic 

field strength, we assume that e is positive. Defining 

1 
(5.16) 

X -  1 + s  

822/64/1-2-21 
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we have 

dT { T  1 -  C[(1 -Z)/Z, ~ ] } 
- - = - ~ T  i (5.17) dl 2~ 1 - C[(1 - )-)~; e-] + -~---~)/Z, e + 23/2 

d)~ r 1 - CE(1 - )0/z, e] 
-~= -)~(1-)O~I_C[(I_z)/X,e]+CE(I_)O/Z,e+2]/2 (5.18) 

dr2 
a~-= (2 + e)f2 (5.19) 

We see that Eq. (5.19) is decoupled from Eqs. (5.17) and (5.18). This allows 
us to project the flow onto a plane with a given value of ~2. In the 
parameter space P = (T,)~) two fixed points are found: 

P(o) = (2e, 0) (5.20) 

P(u) = ( m~1/2, 1 ) (5.21) 

Here, the coefficient m can be determined by a higher-order (in disorder) 
calculation. T :  0 is a fixed line which is not interesting in the present 
analysis. 

The nontrivial fixed poins P(o) and P(u) are the known results for the 
pseudo-orthogonal and the pseudo-unitary symmetries. For the pseudo- 
orthogonal case, )~=0 or e = 0 .  For the pseudo-unitary case, Z=  1 or 
c~= oe. The advantage of our formalism is that the crossover behavior 
becomes obvious. 

Near the orthogonal fixed point P(o) we find that to the lowest order 
in loop expansion, 

It(b)[ = b ~ [tl (5.22) 

~(b) = b2~ (5.23) 

where b is a length scale and t is the deviation of T from its pseudo- 
orthogonal fixed point value 2e. In general, the e in Eq. (5.22) is l/v, where 
v is the localization length exponent. The generating functional density, 
correlation (or localization) length, and the conductivity have the following 
scaling forms around the orthogonal fixed point P{o) (at zero f2): 

f(lt,, ~)=- Itlv(2+~' Y, ( ~ )  (5.24a) 

~(Itl,  cO = Itl u Y2 (5.24b)  

~r(ltl, ~)=  Itl w Y3 (5.24c) 
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which implies that the crossover exponent is 

~b =-2 [1 + O(e2)] (5.25) 
v 

This is in agrreement with other work/5 7.9) Note that the 2 in Eqs. (5.23) 
and (5.25) is trivial and follows from dimensional analysis. Our nontrivial 
result is that the order-e correction to the 2 vanishes. 3 In their 
phenomenological analysis, Khmel'nitskii and Larkin (9) conclude that 2 is 
the exact result, which is also suggested by Biafore eta/., (7) using a gauge 
invariance argumen.t. In any case, the magnetic field is a relevant perturba- 
tion near the orthogonal fixed point. The magnetic field causes the cross- 
over by driving the system away from the orthogonal fixed point to the 
unitary fixed point P~u/. 

Note that ]t[ is the difference between the inverse of the bare conduc- 
tivity and its critical value and consequently it is the dimensionless distance 
from the mobility edge. For e = 0, we find 

f ..~ J E -  E,,[ v(~+ 2) (5.26a) 

,'~ IE -Ec l  v (5.26b) 

E �9 a ~ l E -  cl, s=ve  (5.26c) 

To lowest order in 5, v = e  1 
Alternatively, we also have 

f ~o:(z+~12Zl(ltl ~ l/2v) (5.27a) 

~ 0 ~  1/2Z2(ltlo~ 1/2v) (5.27b) 

O" ~ 0~e/Zz3( I t I 0~ 1/2v) (5.27c) 

Using that I tl = 0 corresponds to the mobility edge for the system without 
the magnetic field, and that for e r 0, this does not represent the mobility 
edge any more, we then expect Z3(0) to be finite. Therefore, the mobility 
edge must be shifted. The new mobility edge is determined by a finite value 
of the argument of Z, i.e., at 

Itl o~--l/2v = A (5.28) 

where A is an undetermined number. The critical disorder is shifted by 

Tc(c~) = T~(1 + A~ ~/2v) (5.29) 

3 For  the case where there is a crossover due to a posit ion-independent external field, a similar 
result is found. (3'4~ 
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This is also in agreement with the phenomenological analysis of 
Khmel'nitskii and Larkin. (9) 

The exact position of P(u) can be determined by doing a two-loop 
calculation. Previous work finds that the coefficient in Eq. (5.21) is 
m = 2-1/2. With )( = 1, we linearize the flow equation for temperature near 
P(u) and find 

dt 
d--l = 2et + O(t 2) (5.30) 

Equation (5.30) implies the scaling behavior given by Eq. (5.26c) with 
v = 1/2e. 

It is easy to verify that d)~/dT~ +oo as T =  2e, and Z ~ 0 +. Therefore, 
the RG flow runs away from the fixed point P(o) vertically. The details of 
the flow beneath the fixed point P(u~ rely on the higher-order calculation. 

6. D I S C U S S I O N  

In summary, we have set up a field-theoretic formalism and derived a 
generalized nonlinear sigma model which contains both pseudo-orthogonal 
and pseudo-unitary symmetries to study the critical and crossover behavior 
in the vicinity of the mobility edge for systems when a magnetic field is 
applied. By applying a dimensional regularization and minimal subtraction 
scheme, we renormalized the generating functional. We then obtained the 
renormalization-group flow equations. These flow equations unify the two 
symmetries, i.e., they contain fixed points with pseudo-unitary and pseudo- 
orthogonal symmetries, so that we recovered the critical behavior for these 
two symmetries which have been studied separately previously. The cross- 
over exponent near the orthogonal field is relevant and it drives the system 
away from the orthogonal fixed point to the unitary fixed point. The RG 
flow diagram has been obtained. 

In real electronic systems the effects of electron-electron interaction 
are unavoidable. Recent work strongly suggests that it is impossible to 
properly describe the metal-insulator transition without including these 
interaction effects (see, e.g., ref. 19). However, it is probable that the pure 
localization phase transition can be observed in systems where light or 
acoustic waves are localized. In two dimensions the crossover phenomena 
discussed in this paper are analogous to the localization of third-sound 
waves on a disordered substrate in the presence of a uniform superflow. (41 
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